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Abstract

We propose a simple and practical divide-and-conquer
algorithm for constructing planar Voronoi diagrams.
The novel aspect of the algorithm is its emphasis on
the top-down phase, which makes it applicable to sites
of general shape.

1 Introduction

The divide-and-conquer paradigm gave the first opti-
mal solution for constructing the closest-site Voronoi
diagram in the plane [13]. Though being a classical
example for applying a powerful algorithmic method
in computational geometry, the resulting algorithm
became no favorite for implementation, not even in
the case of point sites.

Literature tells us that divide-and-conquer is in-
volved if emphasis is on the bottom-up phase, even
if the sites are of relatively simple shape; see [10, 15,
5, 11]. The crux is the missing separability condition
for the sites, which would prevent the merge curve
from breaking into several components. Many alter-
native strategies for computing generalized Voronoi
diagrams have been tried, including incremental in-
sertion [3] and the plane-sweep technique [7].

In all these algorithms the bisector curves take part
in the computation. Bisectors are usually composed of
several curve pieces, and may even be two-dimensional
if not defined carefully in the case of shared end-
points (which arise naturally when decomposing com-
plex sites into simpler ones). Consequently, the algo-
rithms are involved and also suffer from numerical
imprecison. Difficulties may be partially eluded when
working in the dual environment: Instead of intersect-
ing two bisectors, the center of a circle tangent to the
three defining sites is calculated. This bears the ad-
vantage of working on the sites directly. For general
sites, however, tangent circles may not be unique, and
are usually difficult to calculate.

The algorithm we propose works directly on the
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sites, too, but its atomic operation is much simpler,
namely, an inclusion test of a site in a fixed circle.
We first extract the combinatorial structure of the
Voronoi diagram, and fill in the bisector curves later
on. In contrast to existing Voronoi/Delaunay algo-
rithms, no constructed object is ever discarded. Our
setting is very general, including polygonal sites, cir-
cular disks, and even spline curves. Boundaries of
curved planar objects with holes can be modeled.

Applications are manifold. One is motion plan-
ning in piecewise-circular environments [16] which,
compared to piecewise-linear environments, leads to
shorter and ‘smoother’ robot paths. Another is shape
offsetting where, compared to similar approaches [9,
8, 4], our method is simpler because we compute only
a combinatorial representation of the diagram for this
application.

2 Dividing the Voronoi diagram

Our sites are pairwise disjoint topological disks of di-
mension two, one, or zero in the Euclidean plane R

2.
That is, a site is either homeomorphic to a disk or to a
line segment, or is simply a point. This includes poly-
gons, circular disks, and open spline curves as sites.
Here and throughout this note, let S denote the given
set of sites. The distance of a point x to a site s ∈ S

is d(x, s) = miny∈s δ(x, y), where δ denotes the Eu-
clidean distance function. As done e.g. in [3, 15], we
define the Voronoi diagram, V (S), of S via its edge

graph, GS , which is the set of all points having more
than one closest point on the union of all sites. An
edge of GS containing points equidistant from two or
more different points on the same site s is called a
self-edge for s. The regions of V (S) are the maxi-
mal connected subsets of the complement of GS in R

2.
They are topologically open sets.

Observation 1 The regions of V (S) bijectively cor-
respond to the sites in S. Each site is contained in its
region, and regions are simply connected.

We thus can talk of the region of a site, s, which we
will denote with R(s) in the sequel. The differences
to a bisector-based definition of the Voronoi diagram
should be noticed. Self-edges are ignored in such a
definition unless the sites are split into suitable pieces.
Such pieces, however, share boundaries—a fact that,
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if not treated with care, may give rise to unpleasant
phenomena like two-dimensional bisectors.

To get rid of the unbounded components of the dia-
gram, we include a surrounding circle, Γ, (or any other
desired curve) into the set S of sites. We can always
choose Γ in a way such that each vertex of V (S \ {Γ})
is also a vertex of V (S).

For later purposes, we seek a (minimal) set of points
whose removal from the edge graph GS breaks all its
cycles. Finding such a set is nontrivial, in view of the
possible presence of self-edges. For a site s 6= Γ, let
p(s) be a point on s with smallest ordinate, and denote
with q(s) the closest point on GS vertically below p(s).
By the boundedness of R(s), the point q(s) always
exists, and we define a new geometric graph as

TS = GS \ {q(s) | s ∈ S \ {Γ}}. (1)

Lemma 1 The graph TS is a tree.

Proof. Omitted in this version. �

3 Augmented domains

Our next aim is to interpret the tree TS in Lemma 1
as the medial axis of a generalized planar domain. In
this way, we will be able to construct the Voronoi dia-
gram V (S) by means of a medial axis algorithm, as if a
simply connected domain was the input. Usually, the
similarity between these two structures is exploited
the other way round: Medial axes are constructed as
special cases of Voronoi diagrams.

Define B = B0 \ {s ∈ S | s 6= Γ}, where B0 denotes
the disk bounded by Γ. Then the medial axis, MA(B),
of B is just the closure of the edge graph GS of V (S).
We want to combinatorially disconnect the shape B
at appropriate positions, such that the medial axis of
the resulting domain corresponds to the tree decom-
position TS of V (S).

As observed in [6], a maximal inscribed disk can be
used to split the medial axis of a simply connected
shape into two components which share a point at
the disk’s center. In order to extend this result to
general shapes, we introduce the notion of an aug-

mented domain, which is a set A together with a
projection πA : A → R

2. Initially, A is the original
shape B, and the associated projection πB is the iden-
tity. Now, consider a maximal inscribed disk D of an
augmented domain A, which touches the boundary
∂A in exactly two points u and v. Denote with

⌢
uv

and
⌢
vu the two circular arcs which the boundary of D

is split into. The new augmented shape, A′, which is
obtained from A by splitting it with D, is defined as

A′ = A0 ∪ D1 ∪ D2

where A0 = {(x, 0) | x ∈ A \ D}, D1 = {(x, 1) |
x ∈ D}, and D2 = {(x, 2) | x ∈ D}. The associated

s2

1s

Figure 1: Boundary of an augmented domain.

projection is

πA′ : A′ → R
2, (x, i) 7→ πA(x).

We say that the line segment in A between
points (x, i) and (y, j) is contained in A′ if one of
the following conditions is satisfied:

1. i = j and the line segment xy avoids ∂D,

2. {i, j} = {0, 1} and xy intersects the arc
⌢
uv, or

3. {i, j} = {0, 2} and xy intersects the arc
⌢
vu.

For any two points (x, i) and (y, j) in A′, their
distance now can be defined. It equals the distance
of πA(x) and πA(y) in R

2, provided the connecting
line segment is contained in A′, and is ∞, otherwise.
An (open) disk in A′ with center (m, i) and radius ̺

is the set of all points in A′ whose distance to (m, i)
is less than ̺. Such a disk is said to be inscribed in A′

if its projection into R
2 is again an open disk.

Having specified inscribed disks for A′, the bound-
ary of A′ and the medial axis (transform) of A′ can
be defined as in the case of planar shapes. In partic-
ular, ∂A′ derives from ∂A by disconnecting the latter
boundary at the contact points u and v of the splitting
disk D, and reconnecting it with the circular arcs

⌢
uv

and
⌢
vu. This process is depicted in Figure 1.

Concerning the medial axis, every maximal in-
scribed disk in A different from D corresponds to ex-
actly one maximal inscribed disk in A′, hence there
is a bijection between MAT(A)\ {D} and MAT(A′)\
{D1, D2}. The medial axis of A′ therefore is the
same geometric graph as MA(A), except that the edge
of MA(A) containing the center of D is split into two
disconnected edges in MA(A′) which both have the
center of D as one of their endpoints.

To draw the connection to the edge graph GS

of V (S), the initial shape B is augmented with |S| − 1
maximal inscribed disks, namely, the ones centered at
the points q(s) ∈ GS , where q(s) was the vertical pro-
jection onto GS of a point with smallest ordinate on
the site s. Denote with AS the resulting domain after
these |S| − 1 augmentation steps. We may conclude
the main finding of this section as follows.

Lemma 2 The tree TS in (1) is the medial axis of
the augmented domain AS .
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4 The algorithm

Using Lemma 2, the Voronoi diagram V (S) can be
obtained by computing the medial axis of the aug-
mented domain AS .

The construction of ∂AS is easy once the augment-
ing disks are available. Their centers lie on the edge
graph GS of V (S) but, of course, the disks need to be
found without knowledge of GS . A simple and efficient
plane-sweep can be applied; we omit the details here.
The construction can be implemented in O(n log n)
time if the sites in S are described by a total of n ob-
jects, each being managable in constant time. Note
that ∂AS then consist of Θ(n) pieces.

Given the fact that ∂AS is highly self-crossing, it
may seem complicated to compute the medial axis
of AS . However, AS has a connected boundary,
and therefore can be split into subdomains with the
same property using maximal inscribed disks. This
suggests a divide-and-conquer algorithm for comput-
ing MA(AS). The domain and its medial axis tree
are split recursively, until directly solvable base cases
remain. For simply connected shapes, a similar ap-
proach has been applied in [2, 1].

Recall that ∂AS consists of pieces that bound in-
scribed disks (called artificial arcs) and pieces that
stem from site boundaries (called site segments). To
calculate a splitting disk, we fix some point p on a
site segment and compute a maximal inscribed disk D

for AS that touches ∂AS at p. Starting with an
(appropriately oriented) disk of large radius, ∂AS is
scanned and the disk is shrunk accordingly whenever
an intersection with a site segment occurs. Intersec-
tions with artificial arcs are, however, ignored. This
works correctly because the set of maximal inscribed
disks is the same for AS and for the original shape B
(except for finitely many augmenting disks). Com-
puting a splitting disk takes O(n) time, if each object
describing the sites can be handled in O(1) time.

5 Practical aspects

In view of keeping the algorithm efficient, disks that
split the domain AS in a balanced way are desired.
Unfortunately, computing such a disk with simple
means turns out to be hard. We can, however, choose
a disk D randomly, by taking a random site seg-
ment on ∂AS as its basis. Objects on ∂AS and edges
of MA(AS) correspond to each other in an (almost)
bijective way, which suffices to convey randomness
from boundary objects to medial axis edges. For the
analysis, we thus may suppose that the center c of D

lies on every edge of MA(AS) with the same proba-
bility. Under the assumption that the graph diameter
of MA(AS) is linear in n, the point c lies on the diam-
eter with constant probability, and MA(AS) is split
at c into two parts of expected size Θ(n). A random-

Figure 2: A mixed set of sites

n atomic steps ratio n log
2

n ratio n(log
2

n)2

507 6620 1.45 0.16
2070 32892 1.44 0.13
5196 91649 1.43 0.12

10474 199001 1.42 0.11
20488 417839 1.42 0.10

172198 4223178 1.41 0.09

Table 1: Count for complex sites bounded by n arcs

ized runtime of O(n log n) results.
The assumption above is realistic in scenarios where

a small number of sites is represented by a large num-
ber of individual objects. For example, if biarcs [12,
14] are used for approximation, then the number of
leaves (hence also the number of vertices) of MA(AS)
is determined by the original sites and not by the num-
ber of biarcs used. See Table 1, where step counts for
our algorithm are averaged (and rounded) over 40 dif-
ferent equal-sized inputs.

The other extreme is the case of n point sites.
Here, by the way how AS is constructed, the diame-
ter of MA(AS) will be typically much smaller, because
many long ‘vertical’ branches will emanate from the
surrounding circle Γ. As a simple heuristic, we may
choose a small number of splitting disks tangent to Γ
first, and continue with randomly splitting the result-

n atomic steps ratio n log
2

n ratio n(log
2

n)2

400 7591 2.20 0.25
2000 54662 2.49 0.23
4000 143391 3.00 0.25

20000 1015149 3.55 0.25
40000 2659149 4.35 0.28

200000 19820012 5.63 0.32

Table 2: Count for uniformly distributed point sites
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ing augmented subdomains. See Table 2 for a sketch
of the obtained results. We implemented the algo-
rithm to accept circular arc input in its current ver-
sion, including (though not optimizing) the handling
of line segments and points. The Voronoi diagram in
Figure 2 has been produced by this code.

The atomic step needed in the algorithm is an in-
tersection test of a site-describing object and a given
disk. This is among the simplest imaginable tests
when a closest-site Voronoi diagram is to be computed
by means of distance calculations. The structure and
variety of the base cases depend on the type of sites.
For point sites, there are only two of them, if the sur-
rounding circle Γ is handled symbolically. They are
of the simple form shown in Figure 3. (Artificial arcs
are drawn dashed.) For circular arc splines, we get
four generic base cases for C1 continuity and nine ad-
ditional cases for C0 continuity; see [1].

Figure 3: The two base cases for point sites.

6 Applications

We put particular emphasis on circular arcs as sites,
because no practical algorithm for constructing their
Voronoi diagram is available, and our algorithm nat-
urally offers the ability to handle them. Moreover,
biarcs [12, 14] enable a data-inexpensive and Voronoi
diagram preserving approximation of general polyno-
mial spline curves; we omit the details here.

The Voronoi diagram V (S) of a set S of circu-
larly approximated sites can be used as a tool for
planning a robot motion in a piecewise-circular (PC)-
environment [16]. Compared to piecewise-linear (PL)-
environments, this offers several advantages. Not only
can an approximation of V (S) be computed more
quickly now, but it also will consist of significantly
fewer edges, namely, Θ(n

2

3 ) instead of n. This leads
to a more compact description of the paths the robot
is supposed to move on. Another feature not shared
by PL-environments is that the paths are locally C1

between any two sites with C1 boundaries, except for
junctions with self-edges.

Several algorithms for shape offsetting are based on
the Voronoi diagram or the medial axis [9, 8, 4]. Once
more, a PC-representation of the input shape is ad-
vantageous, because the class of such shapes is closed
under offsetting operations. Our Voronoi diagram al-
gorithm is particularly well suited to the offsetting
task, because it delivers the combinatorial structure

without computing the edge graph explicitly.
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