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Abstract

The quality of a triangulation is, in many practical
applications, influenced by the angles of its triangles.
In the straight line case, angle optimization is not pos-
sible beyond the Delaunay triangulation. We propose
and study the concept of circular arc triangulations,
a simple and effective alternative that offers flexibil-
ity for additionally enlarging small angles. We show
that angle optimization and related questions lead to
linear programming problems, and we define unique
flips in arc triangles. A possible application of arc tri-
angulations in the area of graph drawing is detailed.

1 Introduction

Geometric graphs and especially triangulations are an
ubiquitous tool in geometric data processing [2, 8, 12].
The quality of a given triangular mesh naturally de-
pends on the size and shape, in particular the angles,
of its composing triangles. In practice, quite often the
Delaunay triangulation (see, e.g., [8]) is the mesh of
choice, because it maximizes the smallest angle over
all possible triangulations of a given finite set of points
in the plane. Still, the occurrence of ‘poor’ trian-
gles cannot be avoided sometimes, especially near the
boundary of the input domain, or due to the presence
of mesh vertices of high edge degree.

The situation becomes different (and interesting
again) if the requirement that triangulation edges be
straight is dropped. In applications as finite element
methods or graph drawing, the numerical and optical
benefits of a graph that potentially grants nice an-
gles can be exploited fully only if curved edges are
admitted. In this paper, we try to encourage the use
of so-called arc triangulations, which simply are tri-
angulations whose edges are circular arcs. Modeling
triangulations this way bears several advantages if an-
gles are to be optimized. Small angles at the bound-
ary can be enlarged by optimizing the arc curvatures
for the given triangulation. Situations with vertices of
high degree can be faced by applying angle-improving
flips in arc triangles that reduce the vertex degree.

Maximizing the smallest angle in a combinatorially
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fixed arc triangulation of a point set can be formu-
lated as a linear program (Section 2). This guaran-
tees a fast solution of this optimization problems for
arc triangulations in practice. Moreover, the linear
program will tell us whether a given domain admits
an arc triangulation of a pre-specified combinatorial
type, by checking whether its feasible region is void.
In particular, flips for arcs can be defined (Section 3),
via optimization after the flip has been applied combi-
natorially. If we want to optimize equiangularity in an
arc triangulation (i.e., maximize the sorted angle vec-
tor lexicographically) then we can do so as well. After
having maximized the first k£ smallest angles, we keep
them fixed in the linear program for maximizing the
(k + 1)st angle, for k& > 0.

We believe that arc triangulations constitute a use-
ful tool in several important application areas as finite
element methods or especially graph drawing (Sec-
tion 5). In view of graph drawing applications [5, 6],
it is desirable to extend our approach to optimizing
angles in general plane graphs. As our simple opti-
mization method works only for full triangulations,
we simply complete the graphs to suitable (e.g. De-
launay triangulation [10, 4]) triangulations and treat
the newly obtained angles differently as explaind in
Section 5. In several applications, the boundary of
the underlying domain will be given as a polynomial
spline curve. Such domains can be approximated in
a convenient way using circular biarc splines [1], and
thus are naturally suited to triangulation by circular
arcs.

2 Angle Optimization

Consider a straight line triangulation, 7, in a given
domain D of the plane. No restrictions on D are
required but, for the ease of presentation, let D be
simply connected and have piecewise circular (or lin-
ear) boundary. In general, 7 will use vertices in the
interior of D. We are interested in the following op-
timization problem: Replace each interior (i.e., non-
boundary) edge of 7 by some circular arc, in a way
such that the smallest angle in the resulting arc tri-
angulation is maximized. To see that this problem
is well defined, notice that the optimal solution, call
it 7%, cannot contain negative angles: The smallest
angle between arcs has to be at least as large as the
smallest angle that arises in 7. As a consequence, for
each vertex in S, the order of its incident arcs in 7*
coincides with the order of its incident edges in the in-
put triangulation 7. In other words, each arc triangle
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Figure 1: Angles of deviation

in 7* is well-oriented, i.e., it has the same orientation
as its straight line equivalent. Therefore, no overlap
of arcs or arc triangles in 7* can occur. Interestingly,
this is a specialty of triangulations; the last conclu-
sion remains no longer true if faces with more than
three arcs are present. We postulate for the rest of
this paper that arc triangles be well-oriented.

We now formulate the angle optimization problem
as a linear program. For each interior edge e = pq in
the triangulation 7 we introduce one variable, ¢, de-
scribing the angle at which the circular arc pg deviates
from the straight connection of p and ¢ (at these very
points). Figure 1 offers an illustration. Note that ¢,
may take on positive or negative values, depending on
the sidedness of pq with respect to e. For each edge €’
of 7 on the input boundary 9D, we fix ¢ to the
value d, given by 9D.! The inequalities for the lin-
ear program now stem from the angles o; arising in 7 .
If e and f are the two edges of 7 that define «;, we
consider the angle between the two respective circular
arcs, 3; = ¢ + o; + ¢y, and we put

e< B

The linear objective function L, which is to be max-
imized, is just L = ¢, what clearly maximizes the
smallest angle (i, in the arc triangulation. There
are precisely 3-(2n—h—2) inequalities and 3n—2h—3
variables, if n is the total number of vertices, and h
among them are situated on 0D.

Sometimes the objective is to optimize not only the
smallest angle, but rather to maximize lexicographi-
cally the sorted list of all arising angles, as is guar-
anteed by the Delaunay triangulation in the straight
line case. This can be achieved by repeatedly solving
the linear program above, keeping angles that have
been optimized already as constants. By modifiying
or adding constraints the results may be adapted to
various needs, as avoiding angles larger than 7 or ob-
taining arc triangles ‘as equilateral as possible’. We

"We have dos = 0 if €’ is a line segment. However,
we can keep ¢/ variable and bound it from above by
some threshold t > d,.

i,

a) Delaunay triangulation ) Arc triangulation

Figure 2: Flip-optimized arc triangulation starting
from a Delaunay triangulation.

consider the flexibility of our simple approach as an
important feature in practice.

3 Flipping in Arc Triangles

The fact that every simple polygon can be triangu-
lated with straight line segments is folklore. Again, a
domain D with piecewise circular boundary need not
admit any triangulation, even if circular arcs may be
used. It is known that a linear number of Steiner
points is required in the worst case to ensure an arc
triangulation [1].

One of the arising questions is: Given the domain D
and a (combinatorial) triangulation 7. in D (possibly
with interior points), can 7. be realized by circular
arcs? For deciding this, we can now utilize the lin-
ear program formulated in Section 2. A realizing arc
triangulation exists if and only if the feasible region
of the linear program is nonempty. As a particularly
nice feature, this enables us to define flip operations
in arc triangulations, as is described below. Consider
some arc triangulation A in the domain D. Each in-
terior arc pq of A lies on the boundary of two arc
triangles. Let r and s be the two vertices of these
arc triangles different from p and ¢. Flipping pg by
definition means removing pq from A, establishing an
arc between r and s combinatorially, and optimizing
over the resulting triangulation. The new arc trian-
gulation, if it exists, will contain a unique circular arc
between r and s. In case of nonexistence, we declare
the arc pq as not flippable. Observe that an arc flip
may change various circular arcs geometrically (by op-
timizing over their curvature), whereas only a single
arc is exchanged combinatorially. An arc flip thus is
a geometrically global operation which is combinato-
rially local.

Optimizing angles with arc flips is a powerful
(though maybe costly) tool. We demonstrate the pos-
itive effect of sequences of such flips with Figures 2a
and 2b. A significant improvement over the Delaunay
triangulation becomes possible (in fact, the smallest
angle is doubled in this example) by reducing the de-
gree of a particular vertex, v. In general, we observe
that small angles in a straight line triangulation stem
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from one of two reasons: (1) The geometry of the
underlying domain D (plus its vertex set) forces slim
triangles in the vicinity of 0D. These ‘boundary ef-
fects’ can usually be mildened by mere geometric op-
timization of the corresponding arc triangulation. (2)
Vertices of degree k naturally impose an upper bound
of 2?” on the smallest arising angle. This situation
can be remedied only with combinatorial changes, and
in contrast to the straight edge case, this is indeed
possible for arc triangulations. (For straight edges,
the combinatorics of the Delaunay triangulation is al-
ready optimal.)

4 Special Arc Triangles

An arc triangle V is termed a w-triangle if the sum of
its interior angles is m. Clearly, straight line triangles
are m-triangles.

Property 1 Let V be some arc triangle. The follow-
ing three properties are equivalent.

(a) V is a w-triangle.

(b) The three supporting circles of V intersect in a
common point exterior to V.

(c) V is the image of a straight line triangle under
a unique Mébius transformation.

Property 2 Any n-triangle is contained in the cir-
cumcircle of its vertices.

Proof. Omitted in this version. O

In view of the mentioned properties, it is worth-
while to study w-triangulations. Such triangulations
will not always exist, depending on the boundary do-
main D, and in particular the sum of its inner angles,
but they do, of course, if D is a simple polygon.

For the remainder of this section, let D be a simple
polygon, and 7 be some straight line triangulation
in D. The geometry of any arc triangulation A in D
that is combinatorially equivalent to 7 is determined
by the vector ®(.A) of deviation angles ¢(a;) for the
interior arcs a; of A; see Section 2. Interpreting ®(.A)
as a point in high dimensions, we can talk of the space
of arc triangulations for 7. The next lemma is impor-
tant in view of optimizing a given w-triangulation.

Lemma 1 Let 7 have n vertices, h of which lie on
the boundary of D. The dimension of the space of
mw-triangulations for T is n — h.

Proof. Omitted in this version. O

Lemma 1 remains true if 7 is replaced by any
m-triangulation of D. In practice, the input is most
likely a straight line triangulation, which is to be opti-
mized into a 7w-triangulation with maximum smallest
angle. Figure 3 displays how a straight line triangula-
tion is optimized into a m-triangulation. The change

—_— |

Figure 3: Straight line triangulation and its angle-
maximized mw-triangulation superimposed

| angle sum || Delaunay min | min arc angle | gain |
180° 18.03° 22.52° 25%
179° - 181° -7 22.92° 26%
175° - 185° -7 24.88° 38%
170° - 190° - 27.53° 50%
160° - 200° -7 31.77° 2%

Table 1: Angle improvement in arc triangulations

does not appear dramatic, but observe that the small-
est angle (occurring at vertex v) almost doubles, from
9.7° to 19°. No arc flips have been applied. Table 1
shows experimental data for a larger input (500 ran-
dom points, postprocessed to keep a certain interpoint
distance as in realistic meshes). We see that the gain
reduces for larger Delaunay meshes but is still signif-
icant, especially if the condition on the angle sum is
relaxed from 7 to a small intervall around that value.

5 Graph Drawing

Literature on drawing graphs nicely in the plane is
large; see e.g. [5, 13]. Most algorithms take as in-
put an abstract graph G and produce a layout of the
vertices of G such that the resulting straight line (or
orthogonal) drawing is aesthetically pleasing, and / or
satisfies certain application criteria. On the theoreti-
cal side, bounds on the achievable angular resolution
are known for various classes of graphs [7, 11], includ-
ing planar graphs.

Results for curvilinear drawings of graphs are com-
paratively sparse. See, for example, [3, 9] and refer-
ences therein, who give lower bounds and algorithms
for drawing graphs on a grid with curved edges (in-
cluding circular multiarcs), and [6] where a method
based on physical simulation is proposed. To our
knowledge, no algorithm has been given that draws a
graph with (single) circular arcs under some optimiza-
tion criterion. Here we actually consider a simpler set-
ting, namely, for a given planar straight line embed-
ding of a graph G, the problem of redrawing G with
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Figure 4: IP backbone graph, straight line and opti-
mally redrawn.

curved edges in an optimal way. In a redrawing, the
positions of the vertices are kept fixed. This may be
a natural demand, for instance, in certain geographi-
cal applications. Let us describe how maximizing the
smallest angle in a circular arc redrawing of G' can be
achieved very easily. It is tempting to apply the lin-
ear optimization method from Section 2 to G directly.
This, however, bears the risk of arc overlaps getting
out of control. The way out is to embed G in some
triangulation 7 first, and treat respective sums of an-
gles as single entities to be optimized. More precisely,
for each angle g in G, given by the concatenation of
angles a1,...,ax, k> 1,in 7 we use the constraint

k
e < Zﬁi
im1

with each ; expressed by the corresponding straight
line triangulation angle a; and its two deviation vari-
ables ¢. and ¢; as in Section 2. Any completion
to a triangulation of G will work (for instance, the
constrained Delaunay triangulation [10, 4] of G), and
the optimal solution does not depend on this choice.
Also, the entire angle vector o1, ..., 0, for G can be
optimized, in an iterative way as before. Additional
restrictions may be posed, like o; < 7 or g; < 3, in
order to preserve obtuse or sharp angles in G.

The adjacency graphs in Figure 4 exemplify the ef-
fect of our circular arc redrawing method. The results
seem satisfactory, in spite of the fact that vertices
are required not to move. Our results compare well
to, e.g. [6], who use for optimization the additional
freedom of placing vertices, though at a price of high
computation cost. For our method, the number of
vertices of the input graph is no limitation, as far as
applications from graph drawing are concerned.

6 Future Work

Circular arc triangulations are a flexible and computa-
tionally controllable structure with potential impact
but, so far, with lack of interest from computational
geometry. Further open questions raised here are the
convergence of the angle-increasing arc flipping pro-
cess in Section 3, and an extension of the presented
results to three dimensions with tetrahedral volumes
with spherical faces. We will elaborate on the prop-
erties of such 3D primitives and their meshes in a
forthcoming paper.
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