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Abstract

We consider a family of problems which are based on a question posed by Erdős and Szekeres
in 1935: “What is the smallest integer g(k) such that any set of g(k) points in the plane contains at
least one convex k-gon?” In the mathematical history this has become well known as the “Happy
End Problem”. There are several variations of this problem: The k-gons might be required to be
empty, that is, to not contain any points of the set in their interior. In addition the points can
be colored, and we look for monochromatic k-gons, meaning polygons spanned by points of the
same color. Beside the pure existence question we are also interested in the asymptotic behavior,
for example whether there are super-linear many k-gons of some type. And finally, for several of
these problems even small non-convex k-gons are of interest.

We will survey recent progress and discuss open questions for this class of problems.

1 Introduction

In 1935 Erdős and Szekeres [22] considered a problem about the existence of a number g(k) such that
any set S of g(k) points in general position in the plane has a subset of k points that are the vertices
of a convex k-gon. Later Erdős and Guy [21] stated the following more general question. “What is the
least number of convex k-gons determined by any set of n points in the plane?”.

Both versions turned out to be rather challenging and have attracted many researchers. Meanwhile
there exists a whole family of problems based on these questions and we will survey recent results and
pose open problems for some of them. More specifically we will discuss the following variants:

• General vs. empty k-gons: A k-gon is called empty, or for short a k-hole, if it does not contain
any points of the set in its interior.

• Convex vs. non-convex: We will consider different levels of non-convexity for k-gons and
k-holes using the recent notion of j-convexity.

• Colored point sets: If the underlying point set is colored, k-gons and k-holes are required to
be monochromatic, that is, they are spanned by points of the same color.

The collection of problems in this paper is by no means exhaustive, but rather reflects the subjective
preference of the author. For a history of this class of problems and an exhaustive list of references we
refer the reader to the surveys [10, 39, 48] and Chapter 8 of [13].

Throughout this paper all point sets in the plane are assumed to be in general position, that is, no
three points in the set are collinear. When a subset of a point set S is the vertex set of a polygon P ,
we say that P is spanned by points in S. Further we will only consider simple (non self-intersecting)
polygons.
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2 k-gons

Around 1933 Esther Klein raised the following question which was partially answered in a classical
paper by Erdős and Szekeres [22] 1935: “Is it true that for any k there is a smallest integer g(k) such
that any set of g(k) points contains at least one convex k-gon?” In the mathematical history this
problem is also known as the “Happy End Problem”, since Szekeres and Klein became engaged while
collaborating on this topic and married shortly afterwards [28, 13]. Klein observed that g(4) = 5 and
Kalbfleisch et al. [33] solved the more involved case of g(5) = 9.

More than 70 years after the problem was posed and more then 35 years after the proof for g(5) = 9,
the case k = 6 has been settled. In 2006 Szekeres and Peters [46] showed that g(6) = 17 by an
exhaustive computer search. The approach is based on the order type of a point set – introduced by
Goodman and Pollack in 1983 [26] – which assigns an orientation to each triple of points. Thus only
a finite number of configurations needs to be considered when combinatorial problems on point sets
are investigated, see e.g. [8] for various applications. Using several observations, Szekeres and Peters
significantly reduced the number of configurations to be computed to make the problem tractable.

The well-known Erdős–Szekeres Theorem [22] states that g(k) is finite for any k. The currently
best bounds are

2k−2 + 1 ≤ g(k) ≤

(

2k − 5

k − 2

)

+ 1,

where the lower bound goes back to Erdős and Szekeres [23] and is conjectured to be tight.

Problem 2.1. [23] Prove or disprove that g(k) = 2k−2 + 1. It is known to be true for k ≤ 6.

The upper bound of Erdős–Szekeres was g(k) ≤
(

2k−4

k−2

)

+ 1. Subsequently Chung and Graham [14]

removed the additive +1, Kleitman and Pachter [36] improved to g(k) ≤
(

2k−4

k−2

)

+ 7 − 2k. The bound
(

2k−5

k−2

)

+ 2 was given by G. Tóth, P. Valtr [47] in 1998, who finally reduced the +2 to +1 in 2005 to
obtain the currently best upper bound [48].

Erdős and Guy [21] posed the following generalization: “What is the least number of convex k-gons
determined by any set S of n points in the plane?” The trivial solution for the case k = 3 is

(

n
3

)

. But
already for convex 4-gons this question is related to the search for the rectilinear crossing number c̄r(S)
of S. This is the number of proper intersections in the drawing of the complete straight line graph on S.
The number of convex 4-gons is equal to c̄r(S) and is thus minimized by sets minimizing the rectilinear
crossing number, a well known, difficult problem in discrete geometry, see [13] and [21] for details.
Asymptotically the number of convex k-gons is ck

(

n
k

)

= Θ(nk) for sufficiently large n and a constant
1

(g(k)
k )

≤ ck < 1. Since c4 equals the rectilinear crossing constant we get 0.37992 ≤ c4 ≤ 0.38048, and

tight values for the number of convex 4-gons are known for n ≤ 27 points, see e.g. [1]. Table 1 gives
the minimum number of convex k-gons every n-point set S determines, for n ≤ 15 and k = 3, 4, 5.

n 3 4 5 6 7 8 9 10 11 12 13 14 15

3-gon 1 4 10 20 35 56 84 120 165 220 286 364 455

4-gon - 0 1 3 9 19 36 62 102 153 229 324 447

5-gon - - 0 0 0 0 1 2 7 ≥ 12,≤ 13 ≥ 20,≤ 34 ≥ 40,≤ 62 ≥ 60,≤ 113

Table 1: Minimum numbers of convex k-gons [8].

3 k-holes

A k-hole is an empty k-gon, that is, a k-gon which does not contain any points of the underlying set in
its interior. In 1978 Erdős [19] raised the following question for convex k-holes: “What is the smallest
integer h(k) such that any set of h(k) points in the plane contains at least one convex k-hole?” For
k ≤ 5 exact values for h(k) are known, see Table 2. As already observed by Esther Klein, every set of



k 3 4 5 6 ≥ 7

≥ 30
h(k) 3 5 10

≤ 1717
∞

Table 2: Bounds for h(k).

5 points determines a convex 4-hole, and 10 points always contain a convex 5-hole, a fact proved by
Harborth [27]. However, in 1983 and on the contrary to what was conjectured, Horton showed that
there exist arbitrarily large sets of points not containing any convex 7-hole [29].

It again took almost a quarter of a century after Hortons construction to answer the existence
question for 6-holes. In 2007/08 Nicolás [40] and independently Gerken [25] proved that every suffi-
ciently large point set contains a convex 6-hole. In both approaches the result has been obtained by
deriving a relation between convex 6-holes and larger convex k-gons, and by considering nested convex
hull layers inside the convex k-gons. While Nicolás provided a simpler proof for h(6) ≤ g(25), Gerken
succeeded with a rather exhaustive case analysis (57 cases) to show h(6) ≤ g(9). In fact he shows that
every point set that spans a convex 9-gon also contains a convex 6-hole. This is best possible in the
sense that there exist point sets without convex 6-holes that have a convex hull of size 8 [41].

From the bounds known for g(k) it follows that any set of at least 1717 points contains a convex
6-hole. Moreover, if the conjecture g(k) = 2k−2 + 1 of Erdős and Szekeres is true, then this bound
drops down to 129 points. A better bound of h(6) ≤ max{g(8), 400} ≤ 463 has been claimed [37, 38],
but not been properly published yet.

Valtr [50] provides a simpler and more general version of Gerken’s proof, but requires more points,
namely h(6) ≤ g(15). As for a lower bound it is known that at least 30 points are needed, that is,
there exists a set of 29 points without convex 6-hole. This set was found by an extensive computer
search, including heuristical point insertion and removal techniques [41].

Problem 3.1. What is the minimum cardinality h(6) such that any set of at least h(6) points deter-
mines a convex 6-hole? It is known that 30 ≤ h(6) ≤ 1717.

n 3 4 5 6 7 8 9 10 11 12 13 14 15

3-hole 1 3 7 13 21 31 43 58 75 94 114...116 136...141 160...169

4-hole - 0 1 3 6 10 15 23 32 42 51...55 61...71 72...90

5-hole - - 0 0 0 0 0 1 2 3 3...5 3...8 3...12

Table 3: Minimum number of convex k-holes [8, 15, 27].

Varying the problem of Erdős and Guy from Section 2 we get the following question [20]. “What
is the least number hk(n) of convex k-holes determined by any set of n points in the plane?” Table 3
gives exact values for small sets, and we know by Hortons construction that hk(n) = 0 for k ≥ 7.
Table 4 summarizes the currently best general lower and upper bounds for k = 3 . . . 6.

n2 − O(n log n) ≤ h3(n) ≤ 1.6196n2 + o(n2)
n
2

2
− O(n) ≤ h4(n) ≤ 1.9397n2 + o(n2)
3⌊n−4

8
⌋ ≤ h5(n) ≤ 1.0207n2 + o(n2)

⌊ n−5

1712
⌋ ≤ h6(n) ≤ 0.2006n2 + o(n2)

Table 4: Lower and upper bounds on the number hk(n) of k-holes.

All upper bounds in Table 4 are taken from [11], improving over previous bounds: For 3-holes
Katchalski and Meir [35] showed that for all n ≥ 3 a lower bound is given by

(

n−1

2

)

and that there
exists a constant c > 0 such that there exist sets with at most cn2 3-holes. Around the same time,
Bárány and Füredi [9] showed that any set of n points has at least n2 − O(n log n) 3-holes. They also



gave examples with at most 2n2 3-holes if n is a power of 2. Valtr [49] described a configuration of
n points related to Horton sets [29] with fewer than 1.8n2 3-holes and also provided examples with
small numbers of convex k-holes, e.g. with at most 2.42n2 convex 4-holes. Later Dumitrescu [18]
improved these constructions to a configuration with ≈ 1.68n2 3-holes, which then consequently was
further improved by Bárány and Valtr [11], obtaining the currently best bounds shown in the table.
For 3-holes it is still unknown whether the constant could be smaller than 1, that is, whether there
exists a family of n-element sets with fewer than n2 3-holes.

Problem 3.2. [11] Prove or disprove that h3(n) ≥ (1 + ε)n2 for sufficiently large n and some fixed
ε ≥ 0.

Concerning lower bounds, we already mentioned the result from [9] for 3-holes. The lower bound
for 4-holes can be found in [18, 49]. For convex 5-holes the existence of at least three convex 5-holes in
every set of 12 points (cf. Table 3) leads two the lower bound of h5(n) ≥ 3⌊n−4

8
⌋ [30], improving over

the previous bound h5(n) ≥ ⌊n−4

6
⌋ of Bárány and Károlyi [10]. To obtain this bound simply sort the

point set from left to right, split it into groups of 8 points, and, for each group, reuse the rightmost 4
points from the group to its left. In a similar way we obtain the lower bound h6(n) ≥ ⌊ n−5

1712
⌋ by using

the upper bound h(6) ≤ 1717.

Problem 3.3. Show a super-linear lower bound for h5(n) and/or give a sub-quadratic upper bound
for h5(n). Similar for h6(n).

Note that proving h5(n) ≥ εn2 for some ε > 0 is equivalent to a positive answer of Problem 3.2 by
results in [44].

3.1 Non-convex k-holes

As we know that there are arbitrarily large point sets which do not contain convex k-holes of a certain
size, we now relax the problem by skipping the convexity requirement. Of course we still want the
holes to be as ’near-convex’ as possible, as otherwise any polygonization (spanning cycle) of the point
set will be an n-hole.

Figure 1: 2-convex polygon (left) and 3-convex (but not 2-convex) polygon (right).

Several ways of measuring the convexity or non-convexity of a given polygon have been proposed
in the literature. See [4] for a short overview, and a generalization of convexity which will prove useful
in our context: A polygon P is called j-convex if there exists no straight line that intersects P in
more than j connected components. Thus 1-convexity refers to convexity in its standard meaning, and
among non-convex polygons 2-convex ones can be considered to be as convex as possible. Figure 1
shows examples of 2-convex and 3-convex polygons. Typical examples for 2-convex polygons are also
pseudo-triangles. These are simple polygons with precisely three convex vertices (so-called corners)
with internal angles less than π; see the recent survey [45] for details and applications.

Obviously 4-gons and 5-gons are always 2-convex, while a 6-gon might be not. Moreover for any
set of up to 9 points there always exists a 2-convex polygonization [3], which implies that 2-convex
k-holes exist for k ≤ 9 for any n ≥ k. Utilizing convex chains of logarithmic length, whose existence
follow from the exponential upper bound for g(k), it is easy to see that every set of n points determines
a 2-convex hole of size Ω(log n). Moreover there exist sets of n points such that the largest spanned
2-convex polygon has size O(log2 n) [4].

Problem 3.4. [4] Prove or disprove that for any n there are sets of n points in R2 in general position
where every 2-convex k-hole is of size at most k = O(log n).



Problem 3.5. [4] Prove or disprove that any set of n points in R2 in general position spans a 2-convex
k-gon of size k = Ω(log2 n).

Another variation is to ask for the existence of 2-convex k-gons of a special type. For example,
what is the minimum cardinality p(k) such that any point set of size p(k) spans either a convex k-gon,
or a pseudo-triangle of size at least k? It is not hard to obtain p(k) for k ≤ 5 and it is known that
p(6) = 12 and 21 ≤ p(7) ≤ 23 [2] and obviously g(k−3

3
) ≤ p(k) ≤ g(k).

Problem 3.6. [2] Determine p(k). What if we consider k-holes and empty pseudo-triangles?

3.2 4-gons and 4-holes

Considering 2-convex k-holes is an interesting question even for small, constant values of k. For small
point sets Table 5 shows the minimum number of convex 4-holes, the maximum number of non-convex
4-holes, and the minimum and maximum number of 2-convex 4-holes, and, for easy comparison, the
number of 4-tuples (which is identical to the maximum number of convex 4-holes).

convex non-convex 2-convex
n

min max min max

(

n

4

)

3 0 0 0 0 0
4 0 3 1 3 1
5 1 8 5 9 5
6 3 18 15 22 15
7 6 36 35 43 35
8 10 64 66 77 70
9 15 100 102 126 126

10 23 150 147 210 210
11 32 216 203 330 330

Table 5: 2-convex 4-holes

For n = 1...7 it can be seen that the minimum number of 2-convex 4-holes is
(

n
4

)

, while it seems

that the maximum number of 2-convex 4-holes is
(

n
4

)

for n ≥ 9. That is, convex sets minimize the
cardinality of 2-convex 4-holes for n ≤ 7 but seem to maximize it for n ≥ 9.

Problem 3.7. Show that point sets in convex position maximize the cardinality of 2-convex 4-holes
for n ≥ 9 points.

Problem 3.8. Which family of point sets (a) minimizes the number of convex 4-holes? (b) maximizes
the number of non-convex 4-holes? (c) minimizes the number of 2-convex 4-holes?

Note that if for a point set S we consider 4-gons instead of 4-holes, then the number of 2-convex
4-gons is related to the rectilinear crossing number c̄r(S) of S mentioned in Section 2. The number of
convex 4-gons equals c̄r(S) while the number of non-convex 4-gons is 3

((

n
4

)

− c̄r(S)
)

. So the number

of 2-convex 4-gons is 3
(

n
4

)

− 2c̄r(S), and therefore minimized for point sets in convex position and
maximized for sets minimizing the rectilinear crossing number.

4 Monochromatic k-holes

In this section we consider variations of the above problems where the points of the given set S belong
to different classes – usually described as colors. We say that a (not necessarily convex) k-gon or
k-hole is monochromatic if all its vertices have the same color. This colorful family of problems was
introduced in 2003 by Devillers et al. [16]. They showed for example that any bichromatic set of n

points determines at least ⌈n
4
⌉ − 2 monochromatic 3-holes with pairwise disjoint interiors, which is

tight. In fact all these 3-holes are of the same color.



It is natural to wonder whether results similar to the just mentioned one are possible when there
are more than two colors: What is the minimum number of colors such that there exist sets of n points
which we can color in a way so that they do not determine any convex k-hole? In [16] (Theorem 3.3)
this question has been settled by showing that already for three colors there exists a coloring of the
Horton set so that it does not span any monochromatic 3-hole.

Note that the according question for k-gons can be reduced to the uncolored version. It is not hard
to see that any c-colored set of at least c · (g(k) − 1) + 1 points contains at least one monochromatic
k-gon [16]. Variations of the problem, where the vertices of the k-gon/k-hole can be colored differently
(polychromatic), or where all vertices must have different colors (heterochromatic), also exist. See [16]
for details.

Another result Devillers et al. provide in [16] is that for k ≥ 5 and any n there are bichromatic
sets of n points without convex monochromatic k-holes. The proof is based on the 3-coloring of the
Horton set mentioned above. So the most interesting remaining cases in this family of problems are
monochromatic 3-holes and 4-holes in bichromatic sets, which we will consider in the next two sections.
A possible relaxation of the problem is to allow j-convex holes, see also Section 4.2.

Problem 4.1. For which combinations of j ≥ 1 and k ≥ 4 does any sufficiently large bichromatic
point set in R

2 in general position determine a j-convex k-hole?

Note that from the results in [16] it is clear that there are point sets with more than two colors
where no j-convex k-holes exist for any j ≥ 1 and k ≥ 3. See also [13] and [34] for a number of related
problems on colored point sets.

4.1 Monochromatic 3-holes

It is easy to see that any bichromatic set of at least 10 points contains a monochromatic 3-hole: From
Section 3 we know that any (uncolored) set of 10 points contains a convex 5-hole. Hence, however
these 5 points are colored, we will obtain a monochromatic 3-hole. In fact it can be argued that any
bichromatic set of n ≥ 7 points contains at least ⌊n−7

2
⌋ monochromatic 3-holes. Therefore, already

bichromatic point sets of size 9 are sufficient to determine a monochromatic 3-hole. From the point set
order type data base [8] it is also known that there are bichromatic sets of 9 and 10 points which only
contain a unique monochromatic 3-hole. Moreover there are sets of 8 points without monochromatic
3-holes, see Figure 2.

Figure 2: Bichromatic point set without monochromatic 3-hole.

As we can split any large set of points into groups of constant cardinality the above observation
already implies that there is a linear number of monochromatic 3-holes. As mentioned above, a stronger
result has been shown by Devillers et al. [16], namely that any bichromatic set of n points determines
at least ⌈n

4
⌉ − 2 monochromatic 3-holes with pairwise disjoint interiors, which is tight.

So the question arises whether there exist super-linear many monochromatic 3-holes, where it is
of course not required that the 3-holes are disjoint. In contrast to the race for the best constant in
the uncolored case described in Section 2, there are only recent results for the asymptotic number of
monochromatic 3-holes in bichromatic sets, and no tight bounds are known yet. The first super-linear
bound of Ω(n5/4) was given in [5]. The proof is based on a so-called discrepancy lemma, which implies
that if there is a significant difference in the cardinality of the two color classes then the number of
monochromatic 3-holes is sufficiently large. Combining this with special triangulations of the point set
obtained by using Dilworth’s Theorem [17], the bound follows.



By refining the techniques used in [5], this result has been improved by Pach and Tóth [43] to
the currently best known bound of Ω(n4/3) monochromatic 3-holes. Unfortunately, the conjecture
in [5] that any bichromatic set of n points spans a quadratic number of monochromatic 3-holes is still
unsettled.

Problem 4.2. [5] Prove or disprove that any bichromatic set of n points in R
2 in general position

determines Ω(n2) monochromatic 3-holes.

An affirmative answer would follow from showing that h5(n) ≥ εn2 for some ε > 0, cf. Problem 3.3.

4.2 Monochromatic 4-holes

From the above discussion it follows that for the existence question of monochromatic k-holes the most
interesting remaining case is the existence of monochromatic 4-holes in bichromatic point sets.

Figure 3(a) shows a set with 18 points which does not contain a convex monochromatic 4-hole, and
larger examples with 20 [12], 30 [24], 32 [51] and most recently 36 [31] points (Fig 3(b)) have been
found. However, all larger examples do contain non-convex monochromatic 4-holes, while the one in
Figure 3(a) does not.

Problem 4.3. Find large examples of bichromatic point sets which do not contain (convex) monochro-
matic 4-holes.

(a) (b)

Figure 3: (a) 18 points without 2-convex monochromatic 4-holes. (b) 36 points without convex
monochromatic 4-holes (sketch, see [31] for details).

Notice that every (uncolored) point set that admits a convex 7-hole will contain a convex monochro-
matic 4-hole for any bicoloration, because at least four of the vertices of the heptagon will have the
same color. However, it has been shown that that for n ≥ 64 any bichromatic Horton set contains
convex monochromatic 4-holes [16], and thus the authors of this paper conjecture that for sufficiently
large n any bichromatic point set contains at least one convex monochromatic 4-hole.

Until recently this conjecture has not been settled even for 2-convex monochromatic 4-holes, that
is, 4-holes which are not required to be convex. This weaker version of the problem arose [32, 42] as no
progress for the original question had been obtained. It was considered to be an important step towards
solving the initial problem. The current situation is that in [7] this relaxed version of the conjecture
has been shown to be true. If the cardinality of the bichromatic point set S is sufficiently large, there
always exists a 2-convex monochromatic 4-gon spanned by S. In [7] the given lower bound on the
cardinality was n ≥ 5044. Using observations on vertex degree parity constraints for triangulations of
S this bound has most recently been lowered to 2760 points [6].

Problem 4.4. [16] Prove or disprove that any sufficiently large bichromatic set of points in R2 in
general position determines at least one convex monochromatic 4-hole.
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