Bichromatic Perfect Matchings with Crossings

O. Aichholzer, S. Felsner, R. Paul, M. Scheucher, and B. Vogtenhuber

Abstract:

We consider bichromatic point sets with n red and n blue points and study straight-line bichromatic perfect matchings on them. We show that every such point set in convex position admits a matching with at least $$#12#>frac{3n^2}{8}-#17#>frac{n}{2}+c$$3n28-n2+ccrossings, for some $$ -#26#>frac{1}{2} #31#>le c #32#>le #33#>frac{1}{8}$$-12≤c≤18. This bound is tight since for any $$k> #42#>frac{3n^2}{8} -#47#>frac{n}{2}+#52#>frac{1}{8}$$k>3n28-n2+18there exist bichromatic point sets that do not admit any perfect matching with k crossings.



Reference: O. Aichholzer, S. Felsner, R. Paul, M. Scheucher, and B. Vogtenhuber. Bichromatic perfect matchings with crossings. In M. A. Bekos and M. Chimani, editors, Graph Drawing and Network Visualization, volume 14465 of Lecture Notes in Computer Science (LNCS), pages 124-132, Cham, 2023. Springer Nature Switzerland.

Back, 2024-02-05